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1. INTRODUCTION

In this paper we discuss mean approximation by complex analytic functions
in the plane C. If XC C is a compact set of positive Lebesgue measure,
we denote by Lp(X) the L p space obtained from Lebesgue measure restricted
to X. We will prove the following result.

THEOREM. Jf XC C is a compact set 0/ positive Lebesgue measure,
1 <p < OCJ and 1Jp + 1Jq = 1, then the/ollowing are equivalent:

(a) The rational junctions with poles ofl X are dense in LP{X).

(b) yq(G - X) = yiG)jor every bounded open set Gee.

Here the q-capacity yq is defined as follows. If K C C is compact, we let

where

yaCK) = infll U Ilq, (1)

(2)

and the infimum is taken over all real-valued functions u E CO
CO (R2) such that

u = 1 on K. If E C C is arbitrary, we define

yaCE) = sup{yaCK): KC E, K compact}.
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If 1 ~ p < 2, it is well known that (a) holds if and only if Xhas no interior;
for p ;;?; 2 this condition is necessary but not sufficient for (a) to hold. If
p = 2 the above theorem is a special case of a result of Havin [5], who
worked with the fine topology of potential theory. In the present paper we
use quasi-topological concepts [4], which are discussed in Section 2. The
proof of the theorem is given in Section 3.

Characterizations of (a) in terms of different concepts have been given by
Sinanjan [7] and Brennan [1].

Remarks Added in Proof" 1. A sharpened form of Sinanjan's "analytic
p-capacity" was used in a study of rational approximation by L. I. Hedberg
(Approximation in the Mean by Analytic Functions, Transactions of the
American Mathematical Society, to appear). Since the present paper was
written, Hedberg has expanded his paper to include a comparison between
his capacity and the capacity used here.

2. As the author announced in his talk at the Walsh conference, the
quasi-topological methods of the present paper can be extended to obtain
a characterization of those compact sets XC C such that the analytic func­
tions on X are dense in Lpa(x), where Lpa(x) denotes the set of all functions
in LiX) which are analytic on the interior of X. The details will appear in
the author's paper, Quasi Topologies and Rational Approximation, in the
Journal of Functional Analysis.

2. THE CAPACITY yq

If I < q < 00, we denote by Wl the Banach space of all functions
u E L q(R2) whose first partial derivatives (in the sense of distribution theory)
are also in Lq(R2), the norm II u Ilq being defined by (2). The basic facts about
these spaces are given in [6, Chap. 3].

We now discuss some elementary properties of the capacity y = Yq defined
above. We begin by noting that the infimum (1) defining the capacity of a
compact set K may be taken over all real-valued functions U E Co""(R2) such
that u ;;?; 1 on K; this can be proved by truncation and use of mollifiers [6].
It is convenient to introduce the outer capacity y* of an arbitrary set E C C
by

y*(E) = inf{y(G) : G ~ E, G open}.

A set E C C is capacitable if y(E) = y*(E). A property is said to hold quasi
everywhere (q.e.) if the set where it fails has zero exterior capacity.

From the definitions we see that every open set is capacitable. Moreover,
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for any decreasing sequence of compact sets K j C C we have y(Ki ) -+ y(nKJ,
It follows that every compact set is capacitable.

From the subadditivity of the norm we get y(K1 U K2) ~ y(K1) + y(KliJ
for compact sets K1 and K 2 • From this follows the countable subadditivity

y* ( 0E i ) ~ I y*(E;)
i~l j~l

for any sequence of sets E; C C.
The following lemma of Egorov type now follows from an argument of

Deny and Lions ([3, Chap. II, Theorem 3.1] or [8, Theorem 4.3}), and we
omit the proof.

LEMMA 1. Suppose that the functions Un E Co" form a convergent sequence
in W/. For every E > 0 there exists an open set Gee with y(G) < E and
a subsequence 0/{un} converging uniformly off G.

This lemma motivates the following definitions. A set E C C is quasi open
if for every E > 0 there exists an open set Gee with y(G) < E such that
E - G is open in C - G. A function /: C -+ C is quasi continuous if for
every E > 0 there exists an open set Gee with y(G) < E such that the restric­
tion of / to C - G is continuous. Thus if/is quasi continuous and Gee
is open, then the inverse image f-1(G) is quasi open. By use of moUrners, it
follows from Lemma 1 that every function in W/ coincides a.e. with a quasi
continuous function.

LEMMA 2. If G is any open set with y(G) < 00, then there exists a real­
valued quasi-continuous/unction w E W/ such that w = 1 on G andli w il = y(G).

Remarks. We call wand equilibrium potential for G. A related result is
given in [8, 4.10].

Proof Let Kj = {x E G : d(x, oG) ;? j-l, d(x, 0) ~j}. Since y(Kj ) -+ y(G),
we can find real-valued functions Uj E Coco such that U; = 1 on K; and
Ii Uj II -+ y(G) < 00. From the elementary theory of Sobolev spaces [6] it
follows that some subsequence of {uj}, which we still call {Uj}, converges
weakly to a limit u E W/. Then u = 1 a.e. on G, and by lower semicontinuity
of the norm we conclude that II U II ~ y(G). It is well known that we may
approximate U in the W/ norm by a sequence of functions of the form
if;jU, where if;j E Co" is identically equal to one on {: z \ <j}; applying mollifiers
to if;jU then gives II u II ;? y(G). Thus Ii u II = y(G). Finally, applying Lemma 1
to a sequence of such approximants of u gives a quasi-continuous function w

of the desired form.
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3. PROOF OF THE THEOREM

(a) =:> (b). Suppose that the rational functions with poles off X are dense
in LvCX). Let G be any bounded open set, and let 1> E Co00 be identically equal
to one on XU G. Let w be the equilibrium potential for G - X. If w = 1
a.e. in G we are done: indeed, approximating w by functions if;w, where
if; E Co00 is identically equal to one on G, and applying mollifiers to if;w, we get

y(G) :'( II w II = y(G - X).

We therefore assume that G n {w < I} has positive Lebesgue measure, and
work to obtain a contradiction. Clearly we can find a function U E Co00 with
support in G such that {u = I} n {w < I} has positive Lebesgue measure.
Now v = u(1) - w) is a quasi-continuous function in Wql which is identically
zero in C - X but is not the zero function. Since TTV = ov/oz *r\ we conclude
that ov/oz is a nonzero function in Lq(X) which annihilates all rational
functions with poles off X, the desired contradiction.

(b) =:> (a). SupposejE Lq(X) annihilates all rational functions with poles offX.
Then by the Calderon-Zygmund theory [2] we have u = 7T-1 j * r 1 E Wi
and j = ou/oz. Applying Lemma 1 to a sequence of mollifiers of u, we see
that U coincides a.e. with a quasi continuous function U such that
U = 0 on C - X. Now from hypothesis (b) we may easily prove that
y*(G - X) = y*(G) for every bounded quasi-open set G; in particular, if
we take G = {U =1= O} we see that U vanishes q.e. Therefore u is the zero
distribution, so j = cu/oz = O.
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